Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.Б.02.05]	ЕСТЕСТВЕННО-НАУЧНЫЙ МОДУЛЬ
	Теплофизика
наименование ди	сциплины (модуля) в соответствии с учебным планом
Направление подготовн	ки / специальность
	22.03.02 МЕТАЛЛУРГИЯ
Направленность (проф	иль)
	22.03.02.11 Металлургия CDIO
Форма обучения	очная
Гол набора	2019

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили	
	к.п.н., Доцент, Феськова Е.В.
	попуность инишизан фамиция

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Повышение качества подготовки выпускников вуза технических направлений рассматривается в настоящее время в связи с реализацией Всемирной инициативы CDIO (Conceive – Design – Implement – Operate, то есть Задумка – Проект – Реализация – Эксплуатация), определяющей новое видение развития современного инженерного образования. Достижение общих целей CDIO в обучении студентов, состоящее в способности и готовности демонстрировать:

- применение базовых инженерных знаний в практической деятельности;
- руководство процессом создания и эксплуатации технических объектов, процессов и систем;
- понимание важности и последствий воздействия научного и технического прогресса на общество.

Физика - одна из основных дисциплин, формирующих естественнонаучную картину мира.

Цель изучения дисциплины:

- сформировать у студентов целостное естественнонаучное мировоззрение;
- добиться глубокого понимания студентами фундаментальных физических основ;
- развитие научного мышления студентов, расширение кругозора и получение студентами дополнительных знаний;
- систематизировать дисциплинарные знания студентов, необходимых для решения прикладных задач инженерной деятельности.

Цель преподавания дисциплины: формирование знаний о физической картине и об основных закономерностях теплофизических процессов.

1.2 Задачи изучения дисциплины

Формирование основных знаний ПО теплофизическим процессам, протекающим в тепловых агрегатах, необходимых при решении вопросов проектировании оптимизации технологических процессов, при эксплуатации теплотехнического оборудования с учетом экологических аспектов.

Для успешного решения задач, необходимо использовать технологии обучения, повышающие активность и самостоятельность студентов. Одной из таких технологий является выполнение проектных заданий различного уровня. Использование возможностей информатизации образовательного процесса позволяет индивидуализировать и дифференцировать учебный процесс.

Учебный процесс, основывающийся на приводимой ниже программе, включает в себя скоординированные между собой лекции, семинарские занятия, лабораторные занятия и проектные задания, самостоятельно выполняемые студентами.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Von a none position in por painting							
Код и наименование индикатора достижения компетенции	Запланированные результаты обучения по дисциплине						
ОК-5: способностью к самоорганизации и самообразованию							
ОК-5: способностью к	цели и задачи изучения дисциплины, пути						
самоорганизации и	разрешения проблем						
самообразованию	планировать работу по изучению дисциплины и						
	организовать имеющиеся ресурсы для изучения						
	базовых понятий дисциплины						
	коррекцией достигнутых результатов и интеграцией						
	дисциплин в процессе обучения						
ПК-1: способностью к анализу	и синтезу						
ПК-1: способностью к анализу	- базовые понятия, операции и методы разделов						
и синтезу	дисциплины;						
	- приемы и алгоритмы структурирования учебного						
	материала						
	_						
	- определять цель анализа изучаемого объекта;						
	- обобщать и анализировать информацию по						
	исследуемым объектам						
	- способностью устанавливать связи между						
	базовыми понятиями и операциями различных						
	разделов дисциплины;						
	- способностью определять необходимость						
	применения базовых методов разделов дисциплины						
	при исследовании изучаемых объектов;						
	- способностью рефлексии и самооценки учебно-						
HIC 4	познавательной деятельности в рамках дисциплины						
	ть основные понятия, законы и модели						
термодинамики, химической кинетики, переноса тепла и массы							
ПК-4: готовностью	основные понятия, законы и модели термодинамики,						
использовать основные	химической кинетики, переноса тепла и массы						
понятия, законы и модели	проводить расчеты по законам термодинамики,						
термодинамики, химической	химической кинетики, переноса тепла и массы						
кинетики, переноса тепла и	способностью анализировать результаты расчета на						
массы	основе законов термодинамики, химической						
	кинетики, переноса тепла и массы						

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

		e
Вид учебной работы	Всего, зачетных единиц (акад.час)	1
Контактная работа с преподавателем:	1,5 (54)	
занятия лекционного типа	0,5 (18)	
практические занятия	0,5 (18)	
лабораторные работы	0,5 (18)	
Самостоятельная работа обучающихся:	0,5 (18)	
курсовое проектирование (КП)	Нет	
курсовая работа (КР)	Нет	
Промежуточная аттестация (Экзамен)	1 (36)	

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

		Контактная работа, ак. час.							
		Занятия лекционного типа		Занятия семинарского типа				Самостоятельная	
№ п/п	Модули, темы (разделы) дисциплины			Семинары и/или Практические занятия		Лабораторные работы и/или Практикумы		работа, ак. час.	
		Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС
1. Te	рмодинамика и теплообмен								
	1. Введение. Основные понятия термодинамики. Основные положения теплофизики	3							
	2. Конвективный теплообмен								
3. Радиационный теплообмен		4							
4. Перенос теплоты теплопроводностью		3							
	5. Определение рабочей поверхности рекуперативного теплообменника			2					
	6. Расчет теплоотдачи при свободной и вынужденной конвекции			4					
	7. Расчет потока излучением в системе серых тел			2					
	8. Расчет потерь тепла при наличии экранов и через отверстия в печах			1					
	9. Теплообмен при наличии излучающих газов			1					

10. Определение потерь тепла через цилиндрическую стенку		2			
11. Определение потерь тепла через плоскую стенку		2			
12. Определение коэффициентов теплоотдачи при свободной конвекции			6		
13. Определение коэффициентов теплоотдачи конвекцией при вынужденном			6		
14. Определение коэффициентов теплоотдачи излучением			6		
15.				10	
2. Тепло- и массоперенос в технологических процессах					
1. Сведения по технологии нагрева	2				
2. Массообменные процессы	2				
3. Определение времени (температуры) нагрева (или охлаждения) тела		2			
4. Определение коэффициентов массоотдачи и потока массы вещества при свободной конвекции		2			
5.				8	
Всего	18	18	18	18	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Тинькова С. М., Пискажова Т. В., Портянкин А. А. Металлургическая теплотехника. Теплопроводность конструктивных элементов: лабораторный практикум [для студентов изучающих теплообменные процессы и выполняющих проектные задания](Красноярск: СФУ).
- 2. Тимофеева А. С., Федина В. В., Тимофеева А. С. Теплофизика металлургических процессов: учебное пособие для вузов по направлению "Металлургия" (Старый Оскол: ТНТ).
- 3. Тинькова С. М. Теплофизика и металлургическая теплотехника: учебное пособие(Красноярск: СФУ).
- 4. Скуратов А. П. Теплофизика металлургических процессов: учеб.-метод. пособие для самостоят. работы [для студентов спец. 150103 «Теплофизика, автоматизация и экология промышленных печей»] (Красноярск: СФУ).
- 5. Тимофеева А. С., Федина В. В., Тимофеева А. С. Теплофизика металлургических процессов: учебное пособие для вузов по направлению "Металлургия" (Старый Оскол: ТНТ).
- 6. Тинькова С. М. Металлургическая теплотехника: практикум (Красноярск: Красноярский университет цветных металлов и золота [ГУЦМи3]).
- 7. Шестаков И. Я., Раева О. В. Теплотехника. Термодинамика: учеб.-метод. пособие для лаб. работ [для студентов спец. 150100 «Металлургия», 130400.65 «Горное дело»](Красноярск: СФУ).
- 8. Тинькова С. М. Тепломассоперенос и теплотехника: методические указания и контрольные задания(Красноярск: Сибирский федеральный университет [СФУ]).

4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):

- 1. Операционная система Microsoft Windows.
- 2. Офисный пакет Microsoft Office, включающий:
- 3. текстовый редактор Word;
- 4. редактор электронных таблиц Excel;
- 5. редактор презентаций Power Point.
- 6. Программа просмотра pdf-файлов Adobe Reader.

4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:

- 1. Научная библиотека СФУ.
- 2. Научная электронная библиотека.

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Минимально необходимый для реализации основной образовательной программы бакалавриата перечень материально-технического обеспечения включает в себя:

кабинет: учебная аудитория, оборудованная мультимедийным демонстрационным комплексом.

Практическое обучение реализуется в специально оборудованном кабинете: аудитория с компьютерами.

Лабораторные работы проводятся в аудиториях, оснащенных физическим оборудованием.

Оснащение учебных кабинетов должно соответствовать требованиям подготовки по рабочей профессии и обеспечивать достижение уровня квалификации по профессиям высшего профессионального образования.